• Users Online: 56
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 6  |  Issue : 2  |  Page : 171-176

Modified rifampin nanoparticles: Increased solubility with slow release Rate


1 Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, (NRITLD), Shahid Beheshti University of Medical Sciences; Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
4 Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, (NRITLD), Shahid Beheshti University of Medical SciencesTehran, Tehran, Iran

Correspondence Address:
Jalaledin Ghanavi
Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmy.ijmy_21_17

Rights and Permissions

Background: Recent advances in nanotechnology-based drug delivery system have been shown to improve either antibacterial efficacy or pharmacokinetics behavior.The aim of this study was to design a rifampin nanoparticle (RIF-NP) which has a high loading capacity with the slow release profile. Material and Methods: The designed chitosan/gelatin/lecithin (Chg/L) RIF-NPs were prepared by multilamellar vesicle. Thereafter, the particle size, zeta potential, morphology, and release rate were investigated. To optimize the loading capacity and release profiles, different concentrations of lecithin were used. Results: Our results showed a correlation of lecithin concentration with size, zeta potential, and loading capacity of RIF-NPs. Increases in lecithin concentration (0.2–2.0 g) could cause a significant size reduction in NPs (250–150 nm); the amount of zeta potential (from 14 to 49 mV;P < 0.05) and loading capacity increases from 8% to 20% (P < 0.05). Designed NPs had slow drug release profile which was influenced by pH and lecithin concentration. The cumulative percentage of RIF released at pH 7.4 was approximately 93% up to 12 h. In overall, release profile was better than standard drug, even in various pH conditions (pH = 1, 3.4, and 7.4). The Chg/L-RIF NPs may be considered as a promising drug nanocarrier. Conclusions: These NPs release RIF in slow and constant rate, which effectively might eliminate the bacilli and prevent the formation of RIF-resistant bacilli.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2830    
    Printed60    
    Emailed0    
    PDF Downloaded435    
    Comments [Add]    
    Cited by others 1    

Recommend this journal